Estimates on Front Propagation for Nonlinear Higher-order Parabolic Equations: an Algorithmic Approach
نویسنده
چکیده
We present an algorithm for the derivation of lower bounds on support propagation for a certain class of nonlinear parabolic equations. We proceed by combining the ideas in some recent papers by the author with the algorithmic construction of entropies due to Jüngel and Matthes, reducing the problem to a quantifier elimination problem. Due to its complexity, the quantifier elimination problem cannot be solved by present exact algorithms. However, by tackling the quantifier elimination problem numerically, in the case of the thin-film equation we are able to improve recent results by the author in the regime of strong slippage n ∈ (1, 2). For certain second-order doubly nonlinear parabolic equations, we are able to extend the known lower bounds on free boundary propagation to the case of irregular oscillatory initial data. Finally, we apply our method to a sixth-order quantum drift-diffusion equation, resulting in an upper bound on the time which it takes for the support to reach every point in the domain.
منابع مشابه
Existence of weak solutions for general nonlocal and nonlinear second-order parabolic equations
In this article, we provide existence results for a general class of nonlocal and nonlinear second-order parabolic equations. The main motivation comes from front propagation theory in the cases when the normal velocity depends on the moving front in a nonlocal way. Among applications, we present level-set equations appearing in dislocations’ theory and in the study of Fitzhugh-Nagumo systems.
متن کاملPseudodifferential Operators And Nonlinear PDE
CONTENTS Introduction. 0. Pseudodifferential operators and linear PDE. §0.1 The Fourier integral representation and symbol classes §0.2 Schwartz kernels of pseudodifferential operators §0.3 Adjoints and products §0.4 Elliptic operators and parametrices §0.5 L 2 estimates §0.6 Gårding's inequality §0.7 The sharp Gårding inequality §0.8 Hyperbolic evolution equations §0.9 Egorov's theorem §0.10 M...
متن کاملMaximum Norm Analysis of Implicit–explicit Backward Difference Formulae for Nonlinear Parabolic Equations
We establish optimal order a priori error estimates for implicit– explicit BDF methods for abstract semilinear parabolic equations with timedependent operators in a complex Banach space setting, under a sharp condition on the non-self-adjointness of the linear operator. Our approach relies on the discrete maximal parabolic regularity of implicit BDF schemes for autonomous linear parabolic equat...
متن کاملMultiscale Approach to Parabolic Equations Derivation: Beyond the Linear Theory
The concept of the iterative parabolic approximation based on the multiscale technique is discussed. This approach is compared with the traditional ways to derive the wide-angle parabolic equation. While the latter fail in the nonlinear case, the multiscale derivation technique leading to iterative parabolic equations can be easily adapted to handle it. The nonlinear iterative parabolic approxi...
متن کاملMini - workshop “ Recent Trends in Traveling Waves ”
10:00~10:40 Danielle Hilhorst (CNRS / Univ. Paris-Sud) Front propagation in nonlinear parabolic equations 11:00~11:40 Thomas Giletti (University of Lorraine) Speed-up of propagation by a road – the periodically heterogeneous framework 11:50~12:30 Masaharu Taniguchi (Okayama University) An (N −1)-dimensional convex compact set gives an N -dimensional traveling front in the Allen-Cahn equation 12...
متن کامل